computing

In 2014, Lawrence Livermore National Laboratory (LLNL) built on a 62-year tradition of translating basic science into technologies that ensure national security, address pressing real world problems and expand the boundaries of fundamental science.

IBM's SoftLayer cloud-enabled World Community Grid to provide free virtual supercomputer power to The Scripps Research Institute to speed screening of promising chemical compounds.

In 1997, IBM’s Deep Blue computer beat chess wizard Garry Kasparov. This year, a computer system developed at the University of Wisconsin-Madison equaled or bested scientists at the complex task of extracting data from scientific publications and placing it in a database that catalogs the results of tens of thousands of individual studies.

Its name is Rivanna, and it’s the University of Virginia’s new $2.4 million Cray computing cluster, a high-performance machine – really a combination of linked high-power computers (hence, “cluster”) – designed to greatly enhance and establish computationally intensive and data-intensive research at the University.

During the past few years, Virginia Tech’s Wu Feng has built upon a National Science Foundation (NSF) / Microsoft grant from the “Computing in the Cloud” program, and synergistically complemented it with subsequent collaborative grants, including a $6 million award from the Air Force on “big computing” for mini-drones and a $1 million award from NSF and the National Institutes of Health on “big data” for the life sciences.

Current computing is based on binary logic – zeroes and ones – also called Boolean computing. A new type of computing architecture that stores information in the frequencies and phases of periodic signals could work more like the human brain to do computing using a fraction of the energy of today's computers.











