Frozen ice crystals on the ground

‘Time-Traveling’ Pathogens in Melting Permafrost Pose Risk to Environment

Digital simulation suggests small percentage of pathogens could cause significant ecological damage

Written byPLOS
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Ancient pathogens that escape from melting permafrost have real potential to damage microbial communities and might potentially threaten human health, according to a new study by Giovanni Strona of the European Commission Joint Research Centre and colleagues, published in the open-access journal PLOS Computational Biology.

The idea that “time-traveling” pathogens trapped in ice or hidden in remote laboratory facilities could break free to cause catastrophic outbreaks has inspired generations of novelists and screenwriters. While melting glaciers and permafrost are giving many types of dormant microbes the opportunity to re-emerge, the potential threats to human health and the environment posed by these microbes have been difficult to estimate.

Lab manager academy logo

Lab Management Certificate

The Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

In a new study, Strona’s team quantified the ecological risks posed by these microbes using computer simulations. The researchers performed artificial evolution experiments where digital virus-like pathogens from the past invade communities of bacteria-like hosts. They compared the effects of invading pathogens on the diversity of host bacteria to diversity in control communities where no invasion occurred.

The team found that in their simulations, the ancient invading pathogens could often survive and evolve in the modern community, and about three percent became dominant. While most of the dominant invaders had little effect on the composition of the larger community, about one percent of the invaders yielded unpredictable results. Some caused up to one third of the host species to die out, while others increased diversity by up to 12 percent compared to the control simulations.

The risks posed by this one percent of released pathogens may seem small, but given the sheer number of ancient microbes regularly released into modern communities, outbreak events still represent a substantial hazard. The new findings suggest that the risks posed by time-traveling pathogens—so far confined to science fiction stories—could in fact be powerful drivers of ecological change and threats to human health.

- This press release was provided by PLOS

lab design news logo

Interested in lab design?

Sign up for the free Lab Design Newsletter from our sister site, Lab Design News.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By completing this form, you agree to receive news updates and relevant promotional content from Lab Design News. You may unsubscribe at any time. View our Privacy Policy

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image