Biomedical Imaging at One-Thousandth the Cost

Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment

Written byMassachusetts Institute of Technology
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.

The system uses a technique called fluorescence lifetime imaging, which has applications in DNA sequencing and cancer diagnosis, among other things. So the new work could have implications for both biological research and clinical practice.

“The theme of our work is to take the electronic and optical precision of this big expensive microscope and replace it with sophistication in mathematical modeling,” says Ayush Bhandari, a graduate student at the MIT Media Lab and one of the system’s developers. “We show that you can use something in consumer imaging, like the Microsoft Kinect, to do bioimaging in much the same way that the microscope is doing.”

The MIT researchers reported the new work in the Nov. 20 issue of the journal Optica. Bhandari is the first author on the paper, and he’s joined by associate professor of media arts and sciences Ramesh Raskar and Christopher Barsi, a former research scientist in Raskar’s group who now teaches physics at the Commonwealth School in Boston.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - November/December 2025

AI & Automation

Preparing Your Lab for the Next Stage

Lab Manager Nov/Dec 2025 Cover Image