Labmanager Logo

CHESS Imaging Reveals How Copper Affects Plant Fertility

Achieving gains in agricultural production depends on adequate levels of soil micronutrients like copper, low levels of which can impact yield by reducing fertility and, in extreme cases, lead to total crop failure

| 3 min read
Share this Article
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Olena Vatamaniuk and Ju-Chen ChiaOlena Vatamaniuk, associate professor in the Section of Soil and Crop Sciences in the School of Integrative Plant Science, left, and postdoc Ju-Chen Chia study Arabidopsis plants by photographing them in the X-ray beam line at the Cornell High-Energy Synchrotron Source.Photo credit: Robert Barker/University PhotographyTechnological advances making it possible to image micronutrients in plant tissues are giving Cornell University scientists additional tools to develop crops that thrive in marginal soils.

The human population is expected to surpass 9 billion by 2050, and meeting future food and energy needs requires increases in agricultural production by enhancing productivity on existing land or by increasing the amount of land used for production. Achieving these gains depends on adequate levels of soil micronutrients like copper, low levels of which can impact yield by reducing fertility and, in extreme cases, lead to total crop failure.

Olena Vatamaniuk, associate professor in the Section of Soil and Crop Sciences in the School of Integrative Plant Science, is using imaging capabilities at the Cornell High Energy Synchrotron Source (CHESS) to explore for the first time how copper affects plant fertility. The work could provide key insights into how plants can be bred for better performance in marginal soils.

Lab manager academy logo

Get training in Lab Crisis Preparation and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Lab Crisis Preparation course

In the U.S., 206 million hectares of soil are classified as being potentially low in copper, with particular impact on major cereal crops. Copper deficiency can be remedied by the application of copper-based fertilizers, but this strategy has significant environmental costs.

Vatamaniuk’s investigation into copper uptake and distribution in plants, with a focus on how copper impacts pollen development and fertility, is funded by an $800,000 grant from the National Science Foundation (NSF). Characterizing the plant proteins that control these processes and identifying the genes responsible will guide development of plant cultivars that are better adapted to marginal, low-copper soils, according to Vatamaniuk.

Her research program in the College of Agriculture of Life Sciences has previously identified two proteins, SPL7 and CIT1, that are vital to this process. Visualizing subtle differences in copper uptake and distribution in response to genetic changes depends on imaging technologies, in which CHESS is a world leader.

“CHESS provides us an excellent opportunity to use high-precision, analytical tools to visualize and quantify the spatial distribution of copper in plants,” Vatamaniuk said of CHESS’s 2-D synchrotron-based X-ray fluorescence microscopy (2D-XRF). Because the procedure involves imaging of living tissue, the presence of the facility on the Ithaca campus minimizes plant transportation and maintenance.

Proximity also allows multiple students to be trained in the use of these methods for addressing complex questions in plant biology. As part of the NSF award, Vatamaniuk is organizing research opportunities for undergraduate and graduate students, with a special effort to attract women and underrepresented minorities.

Interested in Food Science News?

Subscribe to our free Food Science Tools & Techniques newsletter.

“We hope that these studies will not only provide an answer for the long-standing question of how copper affects fertility of plants, but will also provide a paradigm for using X-ray fluorescence microscopy for addressing the role of mineral nutrients in plant reproduction,” she said.

Rice plantsRice plants are photographed in the X-ray beam line at CHESS.Photo credit: Robert Barker/University Photography

Biological imaging of this type is possible through advances in X-ray technology, said CHESS scientist Arthur Woll, a collaborator on the project. With the completion of CHESS-U, an upgrade to CHESS that advances the facility’s X-ray microscopy, these tools will be available for a broad range of research questions. For the past two years, CHESS has been hosting biological imaging workshops focused on questions of interest to the plant science community.

Qi Sun, co-director of the bioinformatics facility at Cornell’s Institute of Biotechnology, is co-principal investigator on the project. Along with Woll, other collaborators include Rong Huang, staff scientist at CHESS, and Lena F. Kourkoutis, assistant professor and the Rebecca Q. and James C. Morgan Sesquicentennial Faculty Fellow in the School of Applied and Engineering Physics.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - November 2024

The Blueprint for Lab Safety Success

Protecting your lab's greatest asset: its people

Lab Manager November 2024 Cover Image
Lab Manager Analytical eNewsletter

Stay Connected with Analytical News

Click below to subscribe to Analytical Tools & Techniques eNewsletter!

Subscribe Today