Electro-analytical system

Eliminating Microplastics in Wastewater at the Source

A research team from INRS has developed a process for the electrolytic treatment of wastewater that degrades microplastics at the source

Written byInstitut National De La Recherche Scientifique - INRS
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Electro-analytical system used to identify appropriate electrodes for anodic oxidation processes.
INRS

A research team from the Institut national de la recherche scientifique (INRS) has developed a process for the electrolytic treatment of wastewater that degrades microplastics at the source. The results of this research have been published in the Environmental Pollution journal.

Wastewater can carry high concentrations of microplastics into the environment. These small particles of less than 5 mm can come from our clothes, usually as microfibers. Professor Patrick Drogui, who led the study, points out there are currently no established degradation methods to handle this contaminant during wastewater treatment. Some techniques already exist, but they often involve physical separation as a means of filtering pollutants. These technologies do not degrade them, which requires additional work to manage the separated particles.

Lab manager academy logo

Lab Management Certificate

The Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Therefore, the research team decided to degrade the particles by electrolytic oxidation, a process not requiring the addition of chemicals. "Using electrodes, we generate hydroxyl radicals (* OH) to attack microplastics. This process is environmentally friendly because it breaks them down into COand water molecules, which are non-toxic to the ecosystem," explains the researcher. The electrodes used in this process are more expensive than iron or steel electrodes, which degrade over time, but can be reused for several years.

An effective treatment for wastewater

Drogui envisions the use of this technology at the exit of commercial laundries, a potential source of microplastics release into the environment. "When this commercial laundry water arrives at the wastewater treatment plant, it is mixed with large quantities of water, the pollutants are diluted and therefore more difficult to degrade. Conversely, by acting at the source, i.e., at the laundry, the concentration of microplastics is higher (per liter of water), thus more accessible for electrolytic degradation," explains the specialist in electrotechnology and water treatment.

Laboratory tests conducted on water artificially contaminated with polystyrene showed a degradation efficiency of 89 percent. The team plans to move on to experiments on real water. "Real water contains other materials that can affect the degradation process, such as carbonates and phosphates, which can trap radicals and reduce the performance of the oxidation process," says Drogui, scientific director of the Laboratory of Environmental Electrotechnologies and Oxidative Processes (LEEPO).

If the technology demonstrates its effectiveness on real commercial laundry water, the research group intends to conduct a study to determine the cost of treatment and the adaptation of the technology to treat larger quantities of wastewater. Within a few years, the technology could be implemented in laundry facilities.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

- This press release was originally published on the INRS website. It has been edited for style

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image