Gas Cylinders

Using compressed gases in the laboratory can be dangerous if they are not handled properly. Many gases can be explosive, flammable, corrosive, and toxic. Because the gases are under high pressure in tanks and cylinders, any release of gas can spread quickly and endanger lab personnel—including the possibility of
death from explosion or asphyxiation. Less-deadly safety risks include physical injuries from mishandling tanks, especially to the hands, feet, and lower back.

Clinical laboratories have among the most stringent requirements for purity of input materials (reagents, solvents, assay kits, gases, etc.). Yet the Clinical Laboratory Improvement Amendments of 1988 (CLIA), officially promulgated in 1992, leave to clinical and diagnostic laboratory managers the task of assuring the quality and performance of chemicals and gases used to calibrate instruments and conduct general lab operations.

Problem: In almost any laboratory or scientific research facility today, there are numerous devices, instruments or processes that require cryogenic fluids or gases supplied from cryogenic sources. The past quarter-century has seen cryogenic liquid cylinders expand from a rarity in laboratories with relatively few applications, to become the dominant mode of supplying high-purity gas and cryogenic fluids.













