nanotechnology

Biological applications such as bioimaging, cancer treatment, tissue engineering and optical coding are just a few ways nanomaterials are being used in the lab today. Unfortunately, factors of nanoparticles, such as internal collisions with molecules, thermal motion, and gravitational forces affect the physical stability of nanoparticles making them difficult to work with in clinical applications or materials science.

Lawrence Livermore National Laboratory recently received $5.6 million from the Department of Defense's Defense Advanced Research Projects Agency (DARPA) to develop an implantable neural interface with the ability to record and stimulate neurons within the brain for treating neuropsychiatric disorders.

Scientists at The Scripps Research Institute (TSRI) have engineered a bacterium whose genetic material includes an added pair of DNA “letters,” or bases, not found in nature. The cells of this unique bacterium can replicate the unnatural DNA bases more or less normally, for as long as the molecular building blocks are supplied.

On April 10, the U.S. Environmental Protection Agency (EPA) announced research grants to Arizona State University and the University of California, Santa Barbara to better understand the impacts of chemicals and nanomaterials throughout their life cycle—from design, manufacture, use and disposal.













