Sample Preparation

Linda Wegley Kelly, PhD, a marine microbial ecologist in the Department of Biology at San Diego State University, talks to contributing editor Tanuja Koppal, PhD, about what has changed in the field since 2001, when she started working in the lab. While genomic and sequencing technologies have become easier and cheaper, the work on the bioinformatics side has now become more tedious in terms of the volume of data that needs to be analyzed. While systems for sample collection and storage have become convenient and customizable, the use of automation in microbiology remains fairly limited. Contamination still remains a cause for concern, and protocols have to be rigorously outlined and implemented.

Problem: At this very moment across the United States, thousands of digital eyes watch over laboratory equipment. It’s nothing scary; it’s the way we protect fragile samples from being damaged or destroyed. From facilities stocked with vaccines for the flu season ahead, to embryos frozen for future fertility treatments, life and livelihoods are literally on the line. For this reason, laboratories use continuous monitoring systems to closely watch over the environment of their specimens during experimental, growth and storage phases.

Derek Wachtel, scientist in the DMPK department at Ironwood Pharmaceuticals, and Mingliang Bao, PhD, senior scientist at Labstat International ULC, talk to contributing editor Tanuja Koppal, PhD, regarding various issues they face with sample prep in their laboratories. They both stress that sample prep is very important and a necessary step in any analysis and with newer technologies making it easier and faster to accomplish, there should be no reason to ignore or overlook it.

Thermo Fisher Scientific has developed a high-performance anion-exchange chromatography with pulsed amperometric detection method, based on AOAC Official Method 2011.18, to determine free and bound myo-inositol in infant formula and adult nutritionals.











