Materials Science

Researchers at the University of Maryland have invented a single tiny structure that includes all the components of a battery that they say could bring about the ultimate miniaturization of energy storage components.

Researchers from Columbia Engineering and the Georgia Institute of Technology have reported the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Crystallographic texture plays an important role in determining a material’s physical and mechanical properties

With a "breaker space," ultra-low vibration chambers and tissue culture rooms, a new world-class research complex at Michigan Engineering will let researchers study the forces at work at the smallest scales to advance nanotechnologies in energy, manufacturing, healthcare and biotechnology.

Georgia Institute of Technology researchers have developed a novel method for improving silicon-based sensors used to detect biochemicals and other molecules in liquids. The simplified approach produces micro-scale optical detection devices that cost less to make than other designs, and provide a six-fold increase in sensitivity to target molecules.

Pity the poor lithium ion. Drawn relentlessly by its electrical charge, it surges from anode to cathode and back again, shouldering its way through an elaborate molecular obstacle course. This journey is essential to powering everything from cell phones to cordless power tools. Yet, no one really understands what goes on at the atomic scale as lithium ion batteries are used and recharged, over and over again.













