Argonne National Laboratory

Ultrafast Imaging of Complex Systems in 3-D at Near Atomic Resolution Becoming Increasingly Possible
It is becoming possible to image complex systems in 3-D with near-atomic resolution on ultrafast timescales using extremely intense X-ray free-electron laser (XFEL) pulses.

As part of the Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, eight Lawrence Livermore National Laboratory (LLNL) researchers have been awarded nearly 800 million core hours on two of America’s fastest supercomputers dedicated to open science – Mira, an IBM Blue Gene/Q system located at Argonne National Laboratory (ANL), and Titan, a Cray XK7 system located at Oak Ridge National Laboratory (ORNL).

For three years, the Beagle supercomputer has driven University of Chicago biology and medical research into new computational territories, fueling groundbreaking research in genomics, drug design, and personalized medicine. Now, with a $2 million grant from the National Institutes of Health, UChicago’s high-performance computing resource for biomedical research is ready for an upgrade that will enable the next wave of pioneering discoveries.

A new discovery about the atomic structure of uranium dioxide will help scientists select the best computational model to simulate severe nuclear reactor accidents.

Testing for ovarian cancer or the presence of a particular chemical could be almost as simple as distinguishing an F sharp from a B flat, thanks to a new microscopic acoustic device that has been dramatically improved by scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Researchers at the US Department of Energy’s (DOE) Argonne National Laboratory have created a small scale “hydrogen generator” that uses light and a two-dimensional graphene platform to boost production of the hard-to-make element.

Scientists’ underwater cameras got a boost this summer from the Electron Microscopy Center at the U.S. Department of Energy’s Argonne National Laboratory. Along with colleagues at the University of Manchester, researchers captured the world’s first real-time images and simultaneous chemical analysis of nanostructures while “underwater,” or in solution.











