Ask the Expert

Karyn M. Usher is an analytical chemist in the Department of Natural Sciences at Metropolitan State University in Saint Paul, MN. At Metro State, her research has focused on sample preparation for the determination of analytes in complex matrices by high performance liquid chromatography.

Dr. Anne Carpenter leads the Imaging Platform at the Broad Institute of Harvard and MIT—a team of biologists and computer scientists who develop image analysis and data mining methods and software that are freely available to the public through the open-source CellProfiler project.
Dr. Arvind Rao has been an assistant professor in the Department of Bioinformatics and Computational Biology at the University of Texas MD Anderson Cancer Center since 2011.

Greg Martin is president of Complectors Consulting (www.complectors.com), based in Pottstown, PA, which provides consulting and training in the area of pharmaceutical analytical chemistry. Mr. Martin has over 25 years of experience in the pharmaceutical industry and was director of pharmaceutical analytical chemistry (R&D) for a major PhRMA company for a number of years. In addition, he has volunteered for the U.S. Pharmacopeia for over 10 years, and currently serves as vice chair of the General Chapters—Physical Analysis Expert Committee and also serves on expert panels on Validation and Verification; Weights and Balances’ Residual Solvents; and Use of Enzymes for Dissolution Testing of Gelatin Capsules.

Linda Wegley Kelly, PhD, a marine microbial ecologist in the Department of Biology at San Diego State University, talks to contributing editor Tanuja Koppal, PhD, about what has changed in the field since 2001, when she started working in the lab. While genomic and sequencing technologies have become easier and cheaper, the work on the bioinformatics side has now become more tedious in terms of the volume of data that needs to be analyzed. While systems for sample collection and storage have become convenient and customizable, the use of automation in microbiology remains fairly limited. Contamination still remains a cause for concern, and protocols have to be rigorously outlined and implemented.

Forest Rohwer, PhD, is a professor in the Department of Biology at San Diego State University. He is a fellow of the American Academy for Advancement of Science (AAAS), American Academy of Microbiology
(AAM), and Canadian Institute for Advanced Research (CIFAR). He led the development of viromics,” which involves isolating and sequencing the RNA/DNA from all the viruses in a sample. From this data, it is possible to determine what types of viruses are present and what functions they are encoding. Dr. Rohwer uses viromics to study ecosystems ranging from coral reefs to the human body and has shown that most genomic diversity on the planet is viral. Dr. Rohwer has published more than 150 peer-reviewed articles, was awarded the International Society of Microbial Ecology Young Investigators Award in 2008, and is listed as one of the World’s Most Influential Scientific Minds (Thomson Reuters 2014).

Reginald Beer, PhD, medical diagnostics initiative leader at Lawrence Livermore National Laboratory, talks to contributing editor Tanuja Koppal, PhD, about the trends and innovations in digital PCR. While touting the advantages of digital PCR, he explains that not every lab needs to invest in this technology. Lab managers should look closely at their samples and assays to determine if digital PCR is needed for their application.

Derek Wachtel, scientist in the DMPK department at Ironwood Pharmaceuticals, and Mingliang Bao, PhD, senior scientist at Labstat International ULC, talk to contributing editor Tanuja Koppal, PhD, regarding various issues they face with sample prep in their laboratories. They both stress that sample prep is very important and a necessary step in any analysis and with newer technologies making it easier and faster to accomplish, there should be no reason to ignore or overlook it.

Geoffrey Bartholomeusz, PhD, associate professor in the Department of Experimental Therapeutics and director of the siRNA Core Facility at the University of Texas MD Anderson Cancer Center, talks to contributing editor Tanuja Koppal, PhD, about why there is a growing interest in replacing some 2D cell culture applications with 3D cell cultures. He talks about where and why he uses 3D-based cell cultures in his lab and what lab managers should take into consideration before making the investment in this innovative technology.

Amrita Cheema, PhD, associate professor and codirector of the Proteomics and Metabolomics Shared Resource at Georgetown University Medical Center, talks to contributing editor Tanuja Koppal, PhD, about the growing use of mass spectrometry as a tool for detecting biomarkers for early prediction and diagnosis of disease, leading to personalized therapy. She highlights that improvements in software
and hardware have led to better resolution and specificity, which in turn have increased the use of this technology for biomarker discovery and will potentially help pave its path into the clinic as a diagnostic tool.

Ike Harper, director for laboratory innovation at Johnson & Johnson, talks to contributing editor Tanuja Koppal, PhD, about the advantages of consolidating lab services with one provider. He explains in great
detail the steps taken at J&J to ensure that the right process and vendor were put in place in order to give the program the time and opportunity it needed to succeed. He emphasizes the need for external validation as well as internal communication and collaboration to get the necessary buy-in and support from the key people involved.

Steve Thomas, an investigator within the Drug Metabolism and Pharmacokinetics department at GSK, talks to contributing editor Tanuja Koppal, PhD, about his experiences implementing a database of
metabolic knowledge that helps the company store, share, and search data around the globe. The process involved analyzing internal needs, evaluating several options, and finding the right informatics solution to give GSK scientists access to each other’s findings to prevent error, repetition, or inefficiency.









