estuary

Microplastic Pollution Accumulates Heavily in Coastal Areas

Review shows that more study is needed of microplastic accumulation in environments such as estuaries, lagoons, and fjords, rather than just beaches

Written byGRID-Arendal
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Microplastic pollution in marine environments is concentrated most highly in coastal habitats, especially fjords and estuaries, according to a new review article published in the journal Marine Pollution Bulletin. Deep sea environments generally have much lower microplastic concentrations, although there are hotspots where elevated concentrations of microplastic occur.

Each year humans produce 360 million tonnes of plastic, and according to one study, around 8 million tonnes (8.8 million US tons) of it enters the ocean. Until recently the fate of microplastics (particles less than 5 mm in size) in the ocean has been unclear, but recent research has found that microscopic particles often settle in marine sediments, following the pattern of other pollutants.

Lab manager academy logo

Advanced Lab Management Certificate

The Advanced Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

The new review article—written by marine geologist Peter Harris, managing director of GRID-Arendal—includes information from more than 80 research papers that each reported measurements of microplastic found in sediments in one or more marine environments. Combining the results of all 80 papers shows that the overall pattern of microplastic pollution mirrors the pathways of natural sediment accumulation in which most material is deposited close to its input source, at the mouths of rivers and generally close to the coastline. Some environments, like fjords, lagoons, and estuaries, are naturally more efficient at trapping sediment and microplastic particles. Others, including highly energetic beaches and wave- and tide-dominated river deltas and estuaries, show less microplastic accumulation; they leak a significant fraction of especially fine sediments and microplastic particles to deep-water, offshore environments.


Related Article: Scientists Track Plastic Pollution From Land to Sea


Shelf and deep sea environments have generally lower micropastic flux rates than coastal environments, but high rates may occur locally where bottom currents concentrate microplastic (e.g. on drift deposits, in submarine canyons and ocean trenches; Kane et al., 2020) or beneath locations of high particulate organic carbon flux driven by primary production (Tekman et al., 2020).

Microplastic pollution was found in fjords at a median concentration of around 7,000 particles per kilogram, and in some cases as high as 200,000 particles per kilogram of sediment. Concentrations were found to be lower in other marine environments: around 300 particles per kilogram in estuarine environments, 200 in beaches, and 80 in deep sea environments.

The article identified critical gaps that should be addressed by further research. More measurements of microplastic accumulation rates are needed from different environments in order to model the actual fate of microplastic pollution in the marine environment. Around 80 percent of published studies are from beach environments, as beaches are easily accessible for collecting samples, but more study is needed of other environments such as estuaries, lagoons, and fjords. Also, more measurements of the mass of microplastics (i.e. grams of plastic per kilogram of sediment) are needed. Only three out of the 80 studies surveyed included data on the mass of microplastics, while the vast majority of studies reported on the number of particles per kilogram of sediment. In order to understand how microplastic is dispersed in the ocean, we need quantitative data on the rate of the mass of plastic accumulating (g m-2 yr-1) from many different environments.

The findings of this work will be included in a new marine litter vital graphics publication that is being prepared by GRID-Arendal in collaboration with the UN Environment Programme.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

- This press release was originally posted on the GRID-Arendal website

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image